Adjusted exponentially tilted likelihood with applications to brain morphology.

نویسندگان

  • Hongtu Zhu
  • Haibo Zhou
  • Jiahua Chen
  • Yimei Li
  • Jeffrey Lieberman
  • Martin Styner
چکیده

In this article, we develop a nonparametric method, called adjusted exponentially tilted (ET) likelihood, and apply it to the analysis of morphometric measures. The adjusted exponential tilting estimator is shown to have the same first-order asymptotic properties as that of the original ET likelihood. The adjusted ET likelihood ratio statistic is applied to test linear hypotheses of unknown parameters, such as the associations of brain measures (e.g., cortical and subcortical surfaces) with covariates of interest, such as age, gender, and gene. Simulation studies show that the adjusted exponential tilted likelihood ratio statistic performs as well as the t-test when the imaging data are symmetrically distributed, while it is superior when the imaging data have skewed distribution. We demonstrate the application of our new statistical methods to the detection of statistically significant differences in the morphology of the hippocampus between two schizophrenia groups and healthy subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adjusted Likelihood Ratio Test for Separability in Unbalanced Multivariate Repeated Measures Data

We propose an adjusted likelihood ratio test of two-factor separability (Kronecker product structure) for unbalanced multivariate repeated measures data. Here we address the particular case where the within subject correlation is believed to decrease exponentially in both dimensions (e.g., temporal and spatial dimensions). However, the test can be easily generalized to factor specific matrices ...

متن کامل

ON BARTLETT CORRECTABILITY OF EMPIRICAL LIKELIHOOD IN GENERALIZED POWER DIVERGENCE FAMILY By

Baggerly (1998) showed that empirical likelihood is the only member in the Cressie-Read power divergence family to be Bartlett correctable. This paper strengthens Baggerly’s result by showing that in a generalized class of the power divergence family, which includes the Cressie-Read family and other nonparametric likelihood such as Schennach’s (2005, 2007) exponentially tilted empirical likelih...

متن کامل

Exponentially Tilted Empirical Likelihood

Newey and Smith (2001) have recently shown that Empirical Likelihood (EL) exhibits desirable higher-order asymptotic properties, namely, that its O ¡ n−1 ¢ bias is particularly small and that biascorrected EL is higher-order efficient. Although EL possesses these properties when the model is correctly specified, this paper shows that the asymptotic variance of EL in the presence of model misspe...

متن کامل

Bayesian quantile regression

1. Introduction: Recent work by Schennach(2005) has opened the way to a Bayesian treatment of quantile regression. Her method, called Bayesian exponentially tilted empirical likelihood (BETEL), provides a likelihood for data y subject only to a set of m moment conditions of the form Eg(y, θ) = 0 where θ is a k dimensional parameter of interest and k may be smaller, equal to or larger than m. Th...

متن کامل

Asymptotic Refinements of a Misspecification-Robust Bootstrap for Empirical Likelihood Estimators

I propose a nonparametric iid bootstrap procedure for the empirical likelihood (EL), the exponential tilting (ET), and the exponentially tilted empirical likelihood (ETEL) estimators. The proposed bootstrap achieves sharp asymptotic refinements for t tests and confidence intervals based on such estimators. Furthermore, my bootstrap is robust to possible model misspecification, i.e., it achieves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 65 3  شماره 

صفحات  -

تاریخ انتشار 2009